波里亚计数

Polya计数 将波利亚计数定理整理在这里,作为一个总结和介绍,也方便以后复习 为什么学习Polya计数定理 通过Polya计数定理,我们可以计算等价类的数量,比如下面这个问题: 用$m$种颜色给一个正方形染色,如果正方形可以自由转动,求染色方案数 让我们从一些概念开始 1 等价关系 1.1 等价关系的定义 假设$V$是一个集合,$S$是定义在$V$上的一个关系,若$S$有如下性质: 自反性 传递性 对称性 那么, $S$就是一个等价关系 $a$和$b$有关系$S$,可以记为$aSb$ 假设定义关系$S$,图形$a$可以旋转得到$b$ $\Leftrightarrow$ $aSb$ 例如图中的$方块_1$和$方块_2$具有关系$S$,即他们可以通过旋转得到彼此,而$方块_1$和$方块_2$则没有关系$S$ 1.2 等价类 通过上图,可以看出来:$方块_1$和$方块_2$是同一类的,而$方块_1$和$方块_2$则是另外两类,于是可以想到集合$V$上的等价关系$S$将集合的元素划分到不同的类中,我们把它称为等价类 而包含元素$a$的等价类则是由满足$aSb$的所有元素$b$组成的(当然也包含元素$a$),即$C(a)={b\in V | \ aSb}$ 仔细想一想,不难发现两个不同等价类是不相交的 2 置换群 2.1 置换群的定义 假设$A={1,2,\dotsc, n}$,通过置换,将$A$中的元素重新排列,得到另一个排列$a_1, a_2, \dotsc, a_n$,可以把这个过程写成 $$ \left ( \begin{matrix} 1 & 2 & \dotsc & n \newline a_1 & a_2 & \dotsc & a_n \end{matrix} \right ) $$ 所以,可以将置换看成一个双射函数$f:{1,2,\dotsc, n} \rightarrow {1,2,\dotsc, n}$ 置换之间也可进行合成运算 $$ \pi_1 = \left ( \begin{matrix} 1 & 2 & 3 & 4 \newline 4 & 2 & 1 & 3 \end{matrix} \right ) \ \ \pi_2 = \left ( \begin{matrix} 1 & 2 & 3 & 4 \newline 2 & 1 & 4 & 3 \end{matrix} \right ) $$...

📝 February 14, 2020 · ⌛ 5 min