AtCoder-Sum of gcd of Tuples

AtCoder-Sum of gcd of Tuples (Hard) 题意 https://atcoder.jp/contests/abc162/tasks/abc162_e 求$\sum\gcd(a_1,a_2,\cdots,a_n)$,其中$a_i\in[1,K]$ Solution 直接计算肯定是不好计算的,可以考虑按$gcd$的值进行分类,问题就转化为一个计数问题 $\displaystyle \gcd(a,b)=d\Rightarrow\gcd(\frac{a}{d},\frac{b}{d})=1$ $\displaystyle {\gcd(a_1,\cdots, a_n)=d的数量}={\gcd(\frac{a_1}{d},\cdots,\frac{a_n}{d})=1的数量}$ 那么, $$ Ans=\sum_{d=1}^{K}dF(\lfloor\frac{K}{d}\rfloor, N) $$ 其中$F(K,N)$表示$\gcd(a_1,\cdots,a_N)=1$的个数,$a_i\in[1,K]$ 可以用容斥算出$\displaystyle F(K,N)=K^N-\sum_{i=1}^{K}F(\lfloor\frac{K}{i}\rfloor)$ #include <cstdio> #include <stack> #include <set> #include <cmath> #include <map> #include <time.h> #include <vector> #include <iostream> #include <string> #include <cstring> #include <algorithm> #include <memory.h> #include <cstdlib> #include <queue> #include <iomanip> // #include <unordered_map> #define P pair<int, int> #define LL long long #define LD long double #define PLL pair<LL, LL> #define mset(a, b) memset(a, b, sizeof(a)) #define rep(i, a, b) for (int i = a; i < b; i++) #define PI acos(-1.0) #define random(x) rand() % x #define debug(x) cout << #x << " " << x << "\n" using namespace std; const int inf = 0x3f3f3f3f; const LL __64inf = 0x3f3f3f3f3f3f3f3f; #ifdef DEBUG const int MAX = 1e6 + 50; #else const int MAX = 1e6 + 50; #endif const int mod = 1e9 + 7; LL N,K; LL f[MAX]; LL fact[MAX]; inline LL add(LL x, LL y){ LL res = x + y; return res >= mod ? res - mod : res; } inline LL qpow(LL x, LL n){ LL res = 1; while (n) { if(n &1) res = res * x % mod; x = x * x % mod; n >>= 1; } return res; } LL F(LL K, LL N){ if(f[K]) return f[K]; LL &res =f[K]; if(K==1){ return res = 1; } // res = qpow(K, N); res = fact[K]; for(LL i = 2, j; i <= K; i=j+1){ j = K/(K/i); // res = add(res, mod-F(K/i, N)); LL tmp = (j-i+1LL) * F(K/i, N) % mod; res = add(res, mod-tmp); } return res; } int main(){ #ifdef DEBUG freopen("in", "r", stdin); #endif scanf("%lld%lld", &N, &K); for(LL i = 1; i <= K; i++) fact[i] = qpow(i, N); LL ans = 0; f[1] = 1LL; for(LL k= 1; k <= K; k++){ F(k, N); } for(LL i = 1, j; i <= K; i++){ ans += f[K/i] % mod * i % mod; if(ans >= mod) ans -= mod; } printf("%lld\n", ans); }

📝 April 25, 2020&nbsp;·&nbsp;⌛ 2 min