Gym 102460L Largest Quadrilateral
Gym 102460L Largest Quadrilateral Largest Quadrilateral 题意 给$n$个点从中选出四个点,使得面积最大 Solution 首先,肯定是求凸包,要求的点一定在凸包上。 不难联想到凸包对每个边求最大三角形面积的问题,也就是旋转卡壳。 可以将问题转化为,对凸包的每一个对角线$A_iA_j$,求最大面积的两个三角形,$\triangle{A_iA_jP}$, $\triangle{A_iA_jQ}$, 然后就可以枚举对角线,旋转卡壳算最大面积 细节 输出的格式 凸包上应该留下共线的点 #include <cstdio> #include <stack> #include <set> #include <cmath> #include <map> #include <time.h> #include <vector> #include <iostream> #include <string> #include <cstring> #include <algorithm> //#include <memory.h> #include <cstdlib> #include <queue> #include <iomanip> #include <cassert> // #include <unordered_map> #define P pair<int, int> #define LL long long #define LD long double #define PLL pair<LL, LL> #define mset(a, b) memset(a, b, sizeof(a)) #define rep(i, a, b) for (int i = a; i < b; i++) #define PI acos(-1.0) #define random(x) rand() % x #define debug(x) cout << #x << " " << x << "\n" using namespace std; const int inf = 0x3f3f3f3f; const LL __64inf = 0x3f3f3f3f3f3f3f3f; #ifdef DEBUG const int MAX = 2e3 + 50; #else const int MAX = 1e6 + 50; #endif const int mod = 1e9+9; void file_read(){ #ifdef DEBUG freopen("in", "r", stdin); // freopen("out", "w", stdout); #endif } template<typename type> struct Vec { type x, y; Vec() {} Vec(type x, type y) : x(x), y(y) {} friend istream & operator >> (istream &in, Vec &A) { in >> A.x >> A.y; return in; } friend Vec operator - (const Vec &A, const Vec &B) { return Vec(A.x-B.x, A.y-B.y); } friend Vec operator + (const Vec &A, const Vec &B) { return Vec(A.x + B.x, A.y + B.y); } friend type det(const Vec &A, const Vec &B) { return A.x * B.y - A.y * B.x; } friend type dot(const Vec &A, const Vec &B) { return A.x * B.x + A.y * B.y; } friend bool operator < (const Vec &A, const Vec &B) { if(A.x != B.x) return A.x < B.x; return A.y < B.y; } friend type area(const Vec &A, const Vec &B) { return abs(det(A, B)); } friend type operator == (const Vec &A, const Vec &B) { return A.x == B.x and A.y == B.y; } }; template<typename type> vector<Vec<type>> convex_hull(vector<Vec<type>> &pt) { sort(pt.begin(), pt.end()); int n = pt.size(); vector<Vec<type>> res(2*n); int k = 0 ; for(int i = 0; i < n; i++) { while(k > 1 and det(res[k-1]-res[k-2], pt[i]-res[k-1]) < 0) // <=会wa k--; res[k++] = pt[i]; } for(int i = n-2, t = k; i >= 0; i--) { while(k > t and det(res[k-1]-res[k-2], pt[i]-res[k-1]) < 0) // <=会wa k--; res[k++] = pt[i]; } res.resize(k-1); return res; } struct ModI { int i, n; ModI(int n ) : i(0), n(n) { assert(n > 0) ;} ModI(int i, int n) : i(i%n), n(n) { assert(n > 0); } ModI operator ++ ( int ) { ModI row = ModI(i, n); i = (i + 1) % n; return row; } ModI operator + (int x) { ModI res = ModI(i, n); res.i = (res.i + x) % n; return res; } int operator = (int x) { return i = x; } bool operator < (int x) const { return i < x; } bool operator == (const ModI &other) const { return i == other.i; } operator int () { return i; } }; template<typename type> type area(const Vec<type> &A, const Vec<type> &B, const Vec<type> &C) { return area(A-B, A-C); } template<typename type> type rotateCalipers(vector<Vec<type>> pt) { int n = pt.size(); type res = 0; for(int i = 0; i < pt.size(); i++) { ModI p1 = ModI(i+1, n); ModI p2 = ModI(i+3, n); for(ModI j = ModI(i+2, n); j+1 != i; j++) { while(p1+1 != j and area(pt[p1], pt[i], pt[j]) < area(pt[p1+1], pt[i], pt[j])) p1 ++; if(j == p2) p2++; while(p2+1 != i and area(pt[p2], pt[i], pt[j]) < area(pt[p2+1], pt[i], pt[j])) p2 ++; auto cur = area(pt[p1], pt[i], pt[j]) + area(pt[p2], pt[i], pt[j]); res = max(res, cur); } } return res; } void out(LL ans) { if(ans & 1) { printf("%lld.5\n", ans >> 1); } else { printf("%lld\n", ans >> 1); } } int main() { file_read(); int T; scanf("%d", &T); while (T--) { int n; scanf("%d", &n); vector<Vec<LL>> pt(n); for(int i = 0; i < n; i++) cin >> pt[i]; auto ch = convex_hull(pt); if(ch.size() < 3) { printf("0\n"); continue; } if(ch.size() == 3) { LL ans = 0; LL A = area(ch[0], ch[1], ch[2]); for(auto p : pt) { if(p == ch[0] or p == ch[1] or p == ch[2]) continue; auto a = area(p, ch[1], ch[2]); a = min(a, area(p, ch[0], ch[2])); a = min(a, area(p, ch[0], ch[1])); ans = max(ans, A-a); } out(ans); continue; } LL res = rotateCalipers(ch); out(res); } return 0; }